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Abstract

Reanalysis data sets have been widely used in regional climate dynamical downscaling studies. In this study, we 
test the use of various reanalysis data sets in constraining dynamical downscaling by assessing the reconstruction 
skill of the Yellow Sea coastal winds using the COSMO model in Climate Mode (CCLM) with 7-km resolution. 
Four reanalysis forcing data sets are used as lateral boundary conditions and internal large-scale constraints (spec-
tral nudging): the National Centers for Environmental Prediction and National Center for Atmospheric Research 
(NCEP/NCAR) reanalysis data set (NCEP1) is downscaled to an intermediate domain with 55-km resolution 
(CCLM_55km), ERA-interim reanalysis data set (ERAint), NCEP climate forecast system reanalysis data set 
(CFSR), and Japanese 55-year reanalysis data set (JRA55).

Several statistical analysis methods are employed to assess the modeled winds through comparison with observed 
offshore wind data from 2006, and it is found that the downscaled simulations yield good quality wind speed prod-
ucts. However, they all tend to overestimate observed low wind speeds and underestimate observed high wind 
speeds. Furthermore, the quality of the modeled wind direction is strongly associated with the wind speed intensi-
ties, exhibiting a much better reproduction of wind direction at strong wind speeds than at light wind speeds. 

The downscaling simulations driven by ERAint, JRA55, and CFSR are consistent with each other in the repro-
duction of local wind speed and direction; the simulations driven by ERAint and JRA55 are slightly better for 
strong winds and those driven by CFSR are better for light winds. All three simulations generate local wind esti-
mates that are superior to those of the simulation driven by CCLM_55km. This superiority reflects the better quality 
of the CFSR, ERAint, and JRA55 reanalyses with regard to assimilated local observations compared with the 
CCLM_55km hindcast, which exploits only upper-air large scale NCEP1 wind fields. 
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1.  Introduction

Ocean surface wind is a fundamental parameter of 
considerable importance to climatological, oceano-
graphical, and meteorological research. It is related 
to various processes in the earth system, including 
wind-induced ocean general circulation, wind-wave 
generation, ocean phytoplankton blooms, and ocean-
ographic down- or upwelling events (e.g., Enriquez 
and Friehe 1995; Liu et al. 2014; Toba et al. 1990; 
Wunsch 1998; Young et al. 2011). Ocean surface wind 
is also critically important to the momentum, mass, 
and energy fluxes between the ocean and the atmo-
sphere, which is crucial information for understanding 
air–sea interactions; the variability of the global 
energy and water cycle; and long-term climate fluctu-
ations and trends (Atlas et al. 2011). 

The coastal area, which is home to two-thirds of 
the world’s population (Artioli et al. 2005), has been 
seriously affected by these wind-related oceanic and 
atmospheric phenomena. A better understanding of 
coastal wind variability is essential not only from 
an academic point of view but also for many marine 
and coastal applications such as wind farms, coastal 
defense, and risk assessments.

To assess the trends, extremes, and variability of 
coastal winds, many efforts have been made to gather 
and generate long-term homogeneous wind data 
sets. Unfortunately, in situ observations, which typi-
cally include oceanographic buoy and ship or vessel 
measurements, suffer from serious limitations in 
terms of both spatial and temporal coverages, causing 
such observations to be unrepresentative of the wind 
regime over wide areas of ocean. They also suffer 
temporal inhomogeneity problems because of changes 
in the instrumentation, observational practices, and 
surroundings of observation stations. However, 
satellite observations, which have the advantage of 
extended spatial coverage compared with buoy or ship 
measurements, are not available near the coast.

Additional available long-term homogeneous wind 
data sets originate from global or regional reanalysis. 
The most famous and commonly used global atmo-
spheric reanalysis data sets are the National Centers 
for Environmental Prediction and National Center for 
Atmospheric Research (NCEP/NCAR) reanalysis data 
set (NCEP1, Kalnay et al. 1996), the European Center 
for Medium-Range Weather Forecasts (ECMWF) 
45-year reanalysis data set (ERA-40, Uppala et al. 
2005), and the Japanese 25-year Reanalysis data set 
(JRA25, Onogi et al. 2007). Although these reanal-
yses are assumed to reliably describe global large-

scale dynamics, they cannot effectively resolve 
meso-scale dynamics or coastal wind conditions as 
the spatial resolution of most global reanalyses is 
in the range of 300–800 km or more (as opposed to 
the higher grid resolution, cf. Pielke 1991). Regional 
reanalysis offers advantages over global reanalysis in 
resolving finer-scale dynamics; however, it is gener-
ally complex and time consuming due to the compli-
cated data assimilation process that is required (e.g., 
the North American Regional Reanalysis, NARR). As 
a much simpler and less expensive alternative, global 
reanalyses can be dynamically downscaled using 
regional climate models (RCMs) to obtain long-term 
homogenous variables. Techniques, such as spectral 
nudging (von Storch et al. 2000) or scale-selective 
bias correction (Kanamaru and Kanamitsu 2007), 
have also been applied to improve reproduction 
quality (Weisse and von Storch 2010).

Such regional reconstructions, which offer higher 
spatial resolutions and a more detailed representa-
tions of surface boundary conditions (i.e., orography, 
coastline, and vegetation), are expected to better 
describe processes on scales below that of the reanal-
ysis resolution such as low-level meso-scale fronto-
genesis or meso-scale disturbances (e.g., Denis et al. 
2002). Therefore, realistic local wind conditions and 
climatologies at high resolutions are expected to be 
captured by these meso-scale meteorological models. 

Recently, several studies have been conducted 
to investigate the accuracy of meso-scale simula-
tions of ocean surface wind by comparing them 
with buoy or satellite wind data from specific local 
areas (e.g., Accadia et al. 2007; Berge et al. 2009; 
Carvalho et al. 2012; Jimenez et al. 2007; Penabad 
et al. 2008; Shimada et al. 2011; Sousa et al. 2013; 
Winterfeldt et al. 2011; Winterfeldt and Weisse 2009). 
Accadia et al. (2007) compared simulated wind and 
Quick Scatterometer (QuikSCAT) observed wind 
over the entire Mediterranean Sea. They identified a 
lower simulated wind quality in certain critical areas 
surrounded by complex orography in the Mediterra-
nean Sea and demonstrated that numerical damping 
was a likely factor in reducing the simulated wind 
strength. Carvalho et al. (2012) assessed the simu-
lated winds based on various reanalyses against 
data observed along the coast of the Iberian Penin-
sula and determined that in the study area, the more 
recently generated reanalyses (i.e., ERA-Interim and 
NCEP-CFSR) perform better for ocean wind simu-
lations than do the older reanalyses. Sousa et al. 
(2013) assessed the accuracy of QuikSCAT-observed  
and modeled wind patterns along the Galician coast 
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through verification against buoy-observed wind 
data and revealed that the model demonstrated some 
advantages in the representation of near-shore wind 
conditions compared with the QuikSCAT satel-
lite data, and Carvalho et al. (2014a) concluded that 
WRF simulated wind is the best alternative to in situ 
observed offshore wind compared with satellite, anal-
yses, and reanalyses data along the Iberian Peninsula 
coast. Winterfeldt et al. (2011) used QuikSCAT Level 
2B 12.5-km data to detect added value for near-sur-
face wind speeds from a large scale constrained RCM 
over northern Europe and demonstrated that the 
regional modeled wind provided added value with 
respect to the reanalysis wind speed in coastal areas 
with complex orography. 

Their results have shown that the meso-scale 
meteorological models are capable of deriving the 
local wind conditions realistically at high resolution. 
However, most of these studies have investigated the 
ocean surface winds in European or North Amer-
ican offshore regions. In the present study, particular 
attention is focused on the coastal area of the Yellow 
Sea. The climate of the Yellow Sea is dominated by 
the East Asian Monsoon, with prevailing northerly 
or northwesterly winds in winter and predominantly 
southerly or southeasterly winds in summer; intense 
winds typically occur during the winter season (Su 
and Yuan 2005). The wind conditions in the coastal 
area, however, are variable due to the complex coastal 
orography and orientation. 

Wang et al. (2004) have demonstrated that the 
skill of RCMs is highly dependent on the quality of 
the driving data. To capture the coastal winds in the 
Yellow Sea, several different reanalysis data sets are 
used to constrain high-resolution simulations over this 
area, and the downscaled coastal winds are compared 
against several offshore observations (Fig. 1). The 
paper is organized as follows. Section 2 describes 
the forcing data sets, hindcast simulations, observa-
tions, and assessment methods used in this study. The 
results are presented in Section 3, including the char-
acteristics of the observed winds and performance of 
the hindcasts driven by different forcing data sets. The 
discussion and conclusions are given in Sections 4 
and 5, respectively.

2.  Data sets and methods

2.1  Forcing data sets
The initial and boundary conditions for a regional 

meteorological model, which are generally obtained 
from reanalysis data sets, are of fundamental impor-
tance. To quantify the potential for inter-reanalysis 

differences, four major reanalysis data sets were used: 
NCEP1 (Kalnay et al. 1996), CFSR (Saha et al. 2010), 
ERAint (Dee et al. 2011), and JRA55 (Ebita et al. 
2011). 

The global reanalysis of atmospheric fields, 
NCEP1, is a joint project of NCEP/NCAR with the 
intent of supporting the needs of the research and 
climate monitoring communities (Kistler et al. 2001). 
For this reanalysis, a state-of-the-art analysis system 
is applied to perform data assimilation using quali-
ty-controlled data from 1948 to the present. NCEP1 
provides a complete history of the global states of 
the atmosphere with a horizontal grid resolution of 
approximately 210 km (T62 spectral truncation) 
and 28 pressure levels in the vertical direction. The 
product is mostly homogeneous, but a number of 
significant inhomogeneities have been detected, e.g., 
by Vecchi et al. (2013) and Klehmet (2014). The fact 
that it is continuously updated to include the recent 
past makes it one of the longest, most up-to-date, and 
most valuable data sets for the studies of long-term 
climate variability and change (Weisse and von Storch 
2010). 

Fig. 1. Orography of the simulation domain and 
locations of the wind observations.
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The CFSR is a global high-resolution data set 
derived using a coupled atmosphere–ocean–sea 
ice-land system, and it provides an optimized esti-
mate of the state of this coupled system over the 
period 1979–2010. Compared with the NCEP1 reanal-
ysis, it has several additional features, including 1) 
the coupling of the atmosphere and ocean with an 
interactive sea ice component during the generation 
of 6-h guess fields, 2) a higher horizontal grid reso-
lution (approximately 38 km, T382) for the atmo-
spheric fields, and 3) the assimilation of satellite 
radiances using the gridpoint statistical interpola-
tion scheme rather than the derived temperature and 
humidity values (Saha et al. 2010; Wang et al. 2011). 
The CFSR reanalysis has been used in various types 
of studies, including climate diagnosis and ocean 
wave climatology (e.g., Chelliah et al. 2011; Chawla 
et al. 2013). In this study, we used the pre-processed 
CFSR data with a 50-km resolution provided by the 
CLM community (http://www.clm-community.eu/) as 
a forcing data set.

The ERAint reanalysis represents a third-genera-
tion global atmospheric reanalysis produced by the 
ECMWF. A much-improved atmospheric model and 
assimilation system were used for this reanalysis 
compared with those used in ERA-40, and it has a 
much higher spatial resolution (T255, approximately 
80 km in the horizontal direction and 60 levels in 
the vertical direction). Its representations of low-fre-
quency variability and stratospheric circulation are 
also improved compared with that of ERA-40 (Dee 
et al. 2011; Dee and NCAR staff 2013).  

The JRA55 reanalysis is also a third-genera-
tion reanalysis, which covers the period 1958–2012 
and was conducted by the Japan Meteorolog-
ical Agency. The model grid data were released in 
March 2014. Compared with its predecessor, JRA25, 
many improvements were implemented for JRA55, 
including a higher spatial resolution (T319L60, 
approximately 60 km in the horizontal direction and 
60 levels in the vertical direction) as well as the adop-
tion of a new radiation scheme and four-dimensional 
variational data assimilation with variational bias 
correction for satellite radiances (Ebita et al. 2011). 

2.2  Regional atmospheric hindcasts
The RCM used in this study is COSMO-CLM 

version 4.14 (the Consortium for Small-scale  
Modelling in Climate Mode, here abbreviated 
CCLM). It is a three-dimensional non-hydro-
static model, which was originally used for opera-
tional weather predictions and has further evolved 

for use in running climatology simulations (Böhm 
et al. 2006; http://www.clm-community.eu/). The 
CCLM calculates atmospheric variables based on 
thermo–hydrodynamical primitive equations that 
describe a compressible flow in a moist atmosphere 
in rotated geographical coordinates and a generalized 
terrain-following height coordinate (Doms and Schät-
tler 2002). The numerical integration for these simu-
lations is performed using the Runge–Kutta scheme 
with a time step of 60 s (Baldauf et al. 2011). The 
convection is parameterized as described by Tiedtke 
(1989). For the microphysics, a Kessler-type scheme 
(Kessler 1969), which includes snow and cloud ice 
processes, has been chosen. The radiation scheme is 
adopted from Ritter and Geleyn (1992), and the multi-
layer soil model TERRA-ML (Schrodin and Heise 
2002), with nine soil layers, is also part of the CCLM.

In this study, four climate simulations for the year 
2006 are investigated using the CCLM. These simu-
lations are forced by the various reanalysis data 
sets mentioned in the previous section, which are 
employed as initial and lateral boundary conditions. 
Furthermore, the large scale components of the hori-
zontal wind field are used to constrain the simulations 
by means of an interior spectral nudging method (von 
Storch et al. 2000) at every third time step at levels 
above 850 hPa. The purpose of the spectral nudging 
technique is to keep the model solution close to the 
reanalysis values at large scales while, at the same 
time, allowing the model to be free to resolve small 
scales and regional phenomena without the influ-
ence of the forcing data. Spectral nudging is used 
instead of typical grid nudging because of the risk 
of over forcing the RCMs at small scales via grid 
nudging. Liu et al. (2012) have concluded that spec-
tral nudging with the appropriate choice of wave 
numbers provides an advantage over grid nudging 
when balancing a simulation for the reproduction of 
both large and small scales. The calculation of signif-
icant wave numbers for spectral nudging is based on 
the utility developed by Burkhardt Rockel (http://
www.clm-community.eu/index.php?menuid=230&re-
poreid=331). 

The first simulation is double-nested downscaling 
of the NCEP1 reanalysis. The first downscaling 
covers East Asia and the Western Pacific Ocean with 
a 0.5° grid resolution (approximately 55 km) and 
32 vertical levels using the CCLM (hereafter called 
CCLM_55km, Barcikowska 2012). The second 
downscaling, which is nested in the CCLM_55km, is 
performed for the Bohai and Yellow Sea region (Fig. 
1) with a grid resolution of 0.0625° (approximately. 

http://www.clm-community.eu/index.php?menuid=230&reporeid=331
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7 km) and 40 vertical levels (hereafter called CCLM-
NCEP1). The horizontal grid is 168 × 190 in the 
longitudinal and latitudinal directions, respectively, 
with an 8-grid-point sponge zone at each boundary, 
which is indicated by a blank frame in Fig. 1. The 
other three simulations are downscaled directly from 
the CFSR, ERAint, and JRA55 data sets, using the 
same CCLM setup and a high resolution of 0.0625°. 
However, the spectral nudging parameters are 
different because they depend on the resolution of the 
forcing data sets. The output is hourly for all simula-
tions.

2.3  Measured wind data
In this study, the wind speeds provided by the 

downscaled hindcasts are validated against obser-
vations from seven ocean stations with the temporal 
intervals of 0.5 h for the year 2006. The observa-
tion data, which include buoy and platform observa-
tion data, were collected from the National Marine 
Data and Information Service of China (NMDIS) 
and Korean Meteorological Administration (KMA). 
Although our research domain covers the entirety of 
the Bohai and Yellow Seas, high-quality ocean surface 
observations with high temporal resolution are avail-
able only along the coastal areas of the Yellow Sea 
for the year 2006. The locations of the stations where 
these observations were recorded are depicted in Fig. 
1, and detailed information regarding the observa-
tions, including their names, coordinates, and sources, 
is listed in Table 1; in this table, Num. represents the 
number of the simultaneous and valid pairs of simu-
lated and real wind observations for the corresponding 
station, with an ideal value of 8760. The instances 
of fewer valid records, especially for station IEO, 
are the result of the unavailability of measurements 
for certain times or periods. The influence of the 
missing measurements on the comparison results is 
discussed in detail later. The wind data from the simu-

lations correspond to a height of 10 m; therefore, the 
observed wind speeds are converted to a 10-m height 
by accounting for the wave dependence of the rough-
ness length via the Charnock relation (Stull 1988).

2.4  Evaluation measures
The simulated winds are compared with point 

observations. To do so, the simulated grid-based wind 
data are interpolated to the station’s locations using 
nearest-neighbor interpolation.

Several statistical measures are used to assess the 
quality of the simulated wind speed and direction. The 
bias is defined as 

Bias= = −
= =∑ ∑1 1
1 1N x N x xíi

N
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where N denotes the number of valid pairs of simu-
lated and real wind observations and xí'  is the devia-
tion between a modeled wind observation (xmi) and its 
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circular and nonlinear variable, a different expression 
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The bias quantifies the systematic errors on the wind 
data; a positive (negative) bias indicates a clockwise 
(anti-clockwise) deviation in terms of the wind direc-
tion. The root mean square error (RMSE) is defined as 
follows:

RMSE=
=∑

1
1

2

N xii
N ( ) .'

The standard deviation error (STDE), which 

Table 1.  List of wind speed observation sites and associated locations (Lat, Long), numbers of valid pairs (Num.), observa-
tions types (Type) and heights (Height), and data-providing institutions. 

Station name Abbreviation Lat (°N) Long(°E)  Num. Type Height Institution

IEOdo
INCheon
S22101
S22102
S22103

SEOcheon
TAEan

IEO
INC
S01
S02
S03
SEO
TAE

32.12
37.33
37.23
34.80
34.00
36.13
36.91

125.18
126.59
126.02
125.77
127.50
126.50
126.24

4539
6920
8598
7459
6524
6842
6923

platform
buoy
buoy
buoy
buoy
buoy
buoy

42
3
3
3
3
3
3

NMDIS
NMDIS
KMA
KMA
KMA

NMDIS
NMDIS
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represents the variability of the error around its mean, 
is given by STDE2 = RMSE2 – Bias2.

3.  Results 

3.1  The analysis of in situ observations
To provide an overview of the general characteris-

tics of the observed wind data, number and percentage 
of observations in each wind speed range and yearly 
mean wind speed at each observation site are summa-
rized in Table 2. The table shows that light winds 
at speeds between 0 to 4 m s–1 are dominant at the 
stations INC, S01, SEO, and TAE, which are located 
north of 36°N and west of the Korean Peninsula and 
have a yearly mean wind speed of approximately 4 
m s–1. They generally have low percentages (2 % and 
3 %) of observations of wind speeds higher than 12 
m s–1, whereas the other three stations, IEO, S02, and 
S03, observe higher wind speeds, with percentages 
of wind speeds above 12 m s–1 of 7 % to 11 % and a 
yearly mean wind speed of approximately 6 m s–1. By 
considering the locations of the observation stations 
given in Table 1, we find that the wind speed gener-
ally increases from north to south. Among all stations, 
S03 has the largest yearly mean value and highest 
percentage of high wind speeds above 12 m s–1, both 
throughout the entire year and during each season (not 
shown here), primarily because of the intensification 
caused by the topography of the Korean Peninsula and 
the Island of Jeju, or Tsushima.

The corresponding wind roses are shown in Fig. 2. 
Six of the seven stations are displayed; station S01 
is omitted due to invalid wind direction measure-
ments. The bars represent the direction of the origin 
of the wind. For the stations along the western coast 
of the Korean Peninsula, namely, INC, S02, SEO, 
and TAE, northerly and northwesterly winds are 
prevailing; winds blowing from the south, southeast, 
or east are observed at a lower frequency because of 

the monsoon influence and local orography. Northerly 
and northeasterly winds are common at station IEO, 
which is located to the south of the Yellow Sea. At 
station S03, the wind behavior is slightly different, 
with northeast and northwest winds being most 
frequent because of the direction of the strait between 
the Jeju Island and the Korean Peninsula. These 
results show that the wind in coastal areas is highly 
influenced by the local orography, with the winds 
tending to be aligned with the coastal orientation 
(Alvarez et al. 2013; Sousa et al. 2013).

3.2  Intercomparison of downscaled wind data
Taylor diagrams (Taylor 2001) were used to 

perform the intercomparison of downscaled wind 
data. These diagrams provide a simple means for 
assessing the agreement between a set of patterns and 
a reference data set by summarizing the metrics of the 
correlation, centered root mean square difference and 
standard deviation in a single graph. As defined by 
Taylor (2001), the centered root mean square differ-
ence is calculated using the same formula as that 
for the STDE given in Section 2.4; therefore, in the 
remainder of this paper, the STDE is used in lieu of 
the centered root mean square difference. Figure 3 
shows the Taylor diagrams for the wind speed at each 
of the observation stations. The standard deviation 
and STDE are normalized with respect to the standard 
deviation of the observed wind data. The simulated 
wind product that best agrees with the observation 
will lie nearest to the reference point that is indicated 
by a blank circle on the x axis.

According to Fig. 3, at each station, the wind speed 
downscaled from NCEP1 ranks the worst among all 
products. However, the normalized standard devia-
tion of CCLM–NCEP1 is nearly 1 for most stations, 
which indicates that the wind variability of CCLM–
NCEP1 is quite similar to that of the observations. 

Table 2.  Number and percentage of observations in each range of wind speed and mean wind speed at each observation site 
in the year 2006.

Station 0–4.0 m s–1

Num (%)
4.0–8.0 m s–1

Num (%)
8.0–12.0 m s–1

Num (%)
> 12.0 m s–1

Num (%) Mean (m s–1)

IEO
INC
S01
S02
S03
SEO
TAE

1162 (26)
4210 (61)
4414 (51)
2799 (38)
2099 (32)
3380 (49)
4907 (71)

2077 (46)
2090 (30)
2893 (34)
2929 (39)
2182 (33)
2642 (39)
1338 (19)

1000 (22)
  500 (7)
1044 (12)
1237 (17)
1495 (23)
  666 (10)
  491 (7)

300 (7)
120 (2)
247 (3)
494 (7)
748 (11)
154 (2)
187 (3)

6.37
3.88
4.66
5.57
6.60
4.65
3.36
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Fig. 2. Wind rose diagrams calculated from observations recorded at six stations in 2006. The wind direction 
interval is 30°.
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Fig. 3. Taylor diagrams comparing the observations with the four downscaled wind products for each station. The 
green contour lines represent the normalized STDE values, and the blue contour lines represent the normalized 
standard deviations. The correlation between the modeled and observed wind data is indicated by the azimuthal 
position of the point.
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Considering the values of the correlation and STDE 
between CCLM-NCEP1 and the observations, the 
modeled wind variability of CCLM-NCEP1 may be 
stochastic and may not mirror the temporal details of 
the observed variability. The performance of the other 
three downscaled wind products is almost identical. 
They all capture the observed wind patterns, with 
lower normalized STDE values of approximately 0.7 
and higher correlation values that are generally larger 
than 0.65 and can reach as high as 0.8, as for station 
S02. However, the wind variability is underestimated 
by these downscaled wind products, with the values 
of the normalized standard deviation of approximately 
0.8.

To assess the detailed differences and variations 
between each of these models and the observed wind 
data, the statistics were calculated for four wind speed 
bins and eight incoming wind direction sectors. Only 
simultaneous and valid pairs of modeled winds and 
corresponding observed winds were used, and the 
weighted average values are summarized in Table 
3 and Table 4, respectively. The bins and sectors are 
classified based on the observed wind data. The best 
score values are indicated in bold.

From Table 3, it is evident that the bias values are 
positive for wind speeds below 8 m s–1 and tend to be 
negative for wind speeds higher than 8 m s–1 for all 
simulated wind products, meaning that the modeled 
wind products overestimate weaker winds and under-
estimate stronger winds. Similar conclusions have 
been obtained for winds simulated using the WRF 
model in the seas around Japan (Ohsawa et al. 2011) 
and in German coastal waters (Ohsawa et al. 2013). 
This general feature may be shared by all wind simu-
lations based on meso-scale models or may predom-
inantly originate from the forcing data set; further 

study on this issue is necessary. Furthermore, the 
absolute values of the bias and RMSE values are 
the lowest for wind speeds between 4 and 12 m s–1 
compared with the values for low (< 4 m s–1) and high 
(> 12 m s–1) wind speeds, indicating that all simula-
tions demonstrate better performance for moderate 
winds than for low or high winds. The values of the 
STDE do not exhibit a strong variation between 
different wind bins, instead tending to simply increase 
with wind speed. With the STDE being similar across 
the wind speed range, it is the positive/negative model 
bias at low/high wind speeds that manifests itself in 
higher RMSE values at low/high wind speeds.

Among all of the simulated wind products, the 
CCLM–CFSR demonstrates the best performance at 
low wind speeds (< 4 m s–1), followed by CCLM–
ERAint and CCLM-JRA55. For moderate winds 
between 4 and 8 m s–1, the bias of CCLM–CFSR is 
the lowest, and the STDE and RMSE values are 
quite similar for CCLM–CFSR, CCLM–ERAint, and 
CCLM–JRA55, with CCLM–JRA55 being slightly 
better. CCLM–NCEP1 demonstrates the worst perfor-
mance for wind speeds below 8 m s–1. For wind 
speeds higher than 8 m s–1, CCLM–JRA55 is gener-
ally the best, followed by CCLM–ERAint. Although 
CCLM–NCEP1 exhibits lower absolute bias values, 
the STDE and RMSE values are not as satisfactory. 
Overall, CCLM–CFSR tends to offer the best perfor-
mance for the reproduction of lower wind speeds, 
whereas CCLM–JRA55 and CCLM–ERAint tend to 
offer much better performance in reproducing strong 
winds. In general, CCLM–NCEP1 has the worst error 
scores and tends to have a positive wind speed bias in 
comparison with the other three simulations. 

From Table 4, it is apparent that the bias values are 
generally positive for all wind direction sectors of all 

Table 3.  Statistical measures of the bias, STDE, and RMSE between the simulated results and the observations for each 
range of wind speed; unit is m s–1.

Simulation
< 4 m s–1 4–8 m s–1 8–12 m s–1 > 12 m s–1 all

Bias STDE RMSE Bias STDE RMSE Bias STDE RMSE Bias STDE RMSE Bias STDE RMSE

CCLM-
NCEP1 2.91 2.47 3.83 0.99 2.65 2.85 –0.20 2.84 2.88 –1.57 2.86 3.33 1.63 2.93 3.39

CCLM-
CFSR 1.73 1.80 2.51 0.06 1.89 1.95 –1.21 2.02 2.41 –2.81 2.21 3.61 0.55 2.29 2.40

CCLM-
ERAint 1.83 1.81 2.59 0.25 1.89 1.95 –0.95 2.02 2.28 –2.54 2.18 3.37 0.72 2.26 2.42

CCLM-
JRA55 1.83 1.82 2.60 0.25 1.88 1.94 –0.82 2.04 2.25 –2.28 2.16 3.17 0.75 2.23 2.40
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simulated wind products, with the exception of winds 
blowing from the southwest for CCLM–JRA55, 
CCLM–CFSR and CCLM–NCEP1, from the west and 
northwest for CCLM–NCEP1, and from the northeast 
for CCLM–JRA55; all of the latter cases have nega-
tive wind direction biases. This result suggests that 
most of the models tend to rotate the winds clock-
wise. The performance of CCLM–NCEP1 ranks 
the worst among all simulations. For the other three 
simulations, the more frequent wind direction sectors 
generally have lower RMSE values. Northerly winds, 
which are the most common, have the lowest RMSE 
values (approximately 40°) among all sectors. Winds 
blowing from the SW and W sectors, which are less 
frequently recorded, have relatively large RMSE 
values (approximately 60°). It seems that the RMSE 
values are strongly related to the availability of valid 
samples in each direction sector; however, the SE and 
E sectors have much larger RMSE differences, even 
though they have similar numbers of valid samples. A 
possible cause for the variation in the wind direction 
sectors is explained below.

As shown by Carvalho et al. (2014b), a wind 
direction measurement in low wind speed conditions 
suffers higher errors, and the modeled directions 
of winds with weaker intensities tend to have larger 
variability and also larger RMSE values. Figure 4 
shows the percentages of wind speed intensities in 
the different wind direction sectors, which are defined 
based on the observed winds. It shows that the 
percentages of wind speeds between 0 and 4 m s–1 in 
the SE, W, and SW direction sectors are higher than 
those in the other direction sectors. As a result, the 
wind direction accuracies achieved in the SE, SW 
and W sectors are much lower, with larger RMSE 
values, as shown in Table 4. Notably, the E and S 

sectors have similar percentages of low wind speeds, 
as shown in Fig. 4; however, the RMSE values of the 
S sector are much larger, which may be attributed to 
the dominance of southerly winds at station TAE (Fig. 
2). Station TAE is located in complex orographic 
surroundings that the model resolution is too coarse to 
resolve, resulting in a lower wind direction quality in 
the S sector. Overall, the variability of the wind direc-
tions in the different sectors may arise from several 
possible reasons, amongst which are: the accuracy of 
the measurements at the different wind speed intensi-
ties, whether the model resolution is sufficiently high 
to resolve the complex coastal orography, and whether 
the model is able to represent the synoptic or weather 
patterns that stem the winds in the area.

Table 4 also shows that CCLM–ERAint and 
CCLM–JRA55 generally offer better reproductions 
of the wind direction in the N, NE, and NW sectors, 
which are characterized by relatively large percent-
ages of high wind speeds compared with the other 
sectors, whereas CCLM–CFSR performs better in 
the E, SE, and S sectors, which have larger percent-
ages of low wind speeds. This result again confirms 
that CCLM–ERAint and CCLM–JRA55 tend to offer 
a better performance for high winds than CCLM–
CFSR, not only in terms of wind speed, as shown in 
Table 3, but also in terms of wind direction.

Figure 5 shows the dependence of the wind direc-
tion residuals and error variability on the binned 
observed wind speeds at all available stations. This 
figure clearly shows that the variability of the wind 
direction residuals decreases with increasing wind 
speed. Furthermore, as shown in Fig. 5, the CCLM–
NCEP1 results tend to have a larger error variability 
than the results of the other three modeled results, and 
the direction residuals of this simulation (approxi-

Table 4.  Statistical measures of the bias and RMSE between the simulated results and the observations for each wind direc-
tion sector (the numbers of valid observations are shown in parentheses); unit is degree.

Simulation
N (7265) NE (5520) E (4357) SE (4206) S (4270) SW (2607) W (3814) NW (7168) All

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

CCLM-
NCEP1

11.2 70.5 25.6 70.2 19.6 63.0 16.2 62.5 6.4 55.1 –9.9 61.1 –7.6 70.4 –1.3 67.8 8.8 66.0

CCLM-
CFSR

  4.9 42.1   2.1 47.3   0.2 47.7   0.3 59.4 3.8 56.5 –4.9 59.7   2.6 62.9   7.0 53.7 2.8 52.1

CCLM-
ERAint

  1.3 38.2   0.3 47.1   1.2 50.4   1.9 65.3 9.8 61.4   2.9 61.1   6.9 56.6   5.2 48.6 3.4 51.6

CCLM-
JRA55

  0.6 40.1 –0.6 48.1   0.7 51.8   0.7 63.4 8.2 60.4 –0.5 62.1   4.0 57.8   4.3 49.6 2.0 52.3
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mately 10°) are also larger for wind speeds between 
0 and 10 m s–1 than those of the other simulations; 
meanwhile, the direction residuals and error vari-
ability are quite similar among the results of CCLM–
CFSR, CCLM–ERAint, and CCLM–JRA55, with 
small positive residuals (approximately 3°) at wind 
speeds between 0 and 6 m s–1 and negative residuals 
(approximately −5°) for wind speeds between 10 and 
14 m s–1. Winds over 18 m s–1 are included only for 
reference, because the samples corresponding to such 
conditions are sparse and the measurements are less 
reliable because such weather conditions are poor for 
observations because of buoy oscillations owing to 
surface layer distortion (Large et al. 1995). 

Figure 6 shows that the wind speed residuals are 
positive for all wind direction sectors and all simu-
lations, of which the CCLM–NCEP1 results are 
characterized by the largest bias and variability. The 
residuals and variability are quite similar among the 
results of the other simulations, with the residuals 
being larger in the SE, S, SW, and W sectors than 
in the other sectors. The wind speed residuals of 
CCLM–CFSR in the N, NE, and NW sectors, which 
benefit from the superior performance of this model 
at low wind speeds, are smaller than those of CCLM–
ERAint and CCLM–CFSR.

3.3  Wind speed distributions
The distributions of the modeled and observed 

wind speeds are displayed in Fig. 7 for all stations 
using box-and-whisker plots (Brase and Brase 2011). 
The length of the box between Q1 and Q3, which is 
the interquartile range, is a general measure of the 
data dispersion. Figure 7 shows that the observed 
and CCLM–NCEP1 wind speeds have similar 
box lengths, representing much larger wind speed 
dispersions than those of the other simulated winds. 
However, the values of Q1, Q2, Q3, and the 99th 
percentile for the CCLM–NCEP1 wind products 
at all stations are larger than those of the obser-
vations and other modeled winds. In terms of the 
CCLM–CFSR, CCLM–ERAint, and CCLM–JRA55 
wind speeds, the Q1, Q2, Q3, and 99th-percentile 
values differ only slightly among the simulations, 
with the values of Q1, Q2, and Q3 being larger, 
and the 99th-percentile values being smaller than 
the observed results at most stations. The median 
values of CCLM–CFSR are slightly closer to the 
observed median values than are those of CCLM–
ERAint, and CCLM–JRA55, whereas the extreme 
values of CCLM-ERAint and CCLM–JRA55 are 
slightly closer to the observed extreme values than 
are those of CCLM-CFSR. The performance of the 
modeled winds varies from station to station, and 
the largest differences from the observed data are 

Fig. 4. Percentages of different wind intensities in the eight wind direction sectors based on six observation sites.
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found at station TAE, which is located in an area 
with complex coastal orography. Furthermore, the 
results indicate that the stations to the south (i.e., 
S02, S03, and IEO) should generally experience 
higher wind speeds than should the stations to the 
north (INC, S01, SEO, and TAE), which is consis-
tent with the observed results presented in Section 
3.1. The observed extreme winds (99th percentile) 
are strongest at station S03 (16.7 m s–1), followed 
by stations IEO (15.4 m s–1) and S02 (15.4 m s–1); 
these extremes are underestimated by CCLM–CFSR, 
CCLM–ERAint, and CCLM–CFSR, with underesti-
mation ranging 0.8–2.5 m s–1, and overestimated by 
CCLM–NCEP1 with values 0.5–0.8 m s–1. 

4.  Discussion 

4.1  Influence of the temporal availability of 
measurements

From Table 1, we see that the number of valid 
records at some stations is less than 7000 and as low 
as approximately 4500 for station IEO; the uncer-
tainties introduced by the temporal availability of 
the measurements may have some influence on the 
conclusions made in Section 3. Therefore, the simu-
lated data sets are used as references to investigate the 
influence of the temporal limitations of data sets on 
the statistics considered previously. Comparisons are 
performed between the temporal masked simulated 
data (MSD) and the complete simulated data (CMD) 
at all stations in the year 2006. A similar method has 
been used in a hindcast of the surface winds over the 
Iberian Peninsula by Lorente-Plazas et al. (2014).

Fig. 5. Dependence of the wind direction residuals on the binned observed wind speeds at all available stations for 
the (a) CCLM–NCEP1 wind products, (b) CCLM–CFSR wind products, (c) CCLM–ERAint wind products and 
(d) CCLM–JRA55 wind products. The black points represent the average residuals based on 2-m s–1 bins, and the 
bars represent the standard deviations.
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The weight-averaged means and standard devia-
tions for the MSD and CMD reveal minor differences 
between the MSD and CMD, with values less than 
0.03 m s–1 (not shown here). Furthermore, the wind 
distributions and fitted Weibull distributions for the 
MSD and CSD at all stations are shown in Fig. 8 for 
each downscaled simulation. This figure shows that 
the minor differences between the MSD and the CSD 
for each simulation are negligible. With regard to the 
wind direction, the wind roses have been plotted for 
each station and those of CCLM–ERAint have been 
used to evaluate the differences between the MSD and 
the CSD. As revealed by the figures (not shown here), 
the general features of the wind roses are similar 
between the MSD and the CSD for each station. The 
greatest change is observed for station IEO, where 
the CSD contains higher percentages of northern and 
northeastern winds than the MSD, but the differences 

are less than 5 %. Overall, the missing measurements 
in the present study can be concluded to have only a 
minor effect on the wind speed and direction features 
reported in Section 3.

4.2  Intercomparison of forcing data sets and poten-
tial added value from the CCLM 

As illustrated by Wang et al. (2004), the skill of an 
RCM is highly dependent on the quality of the driving 
data, consistency in dynamics and physics between 
the regional model and the large-scale forcing data 
sets, physical parameterizations, and chaotic nature of 
climate systems. Furthermore, Meissner et al. (2009) 
have demonstrated that the lateral boundary condi-
tions contribute more strongly than the other aspects 
of the setup such as the horizontal resolution, time 
integration scheme, and physical parameterizations. 

In our study, the model setup was identical for 

Fig. 6. Dependence of the wind speed residuals on the binned observed wind directions at all available stations for 
the (a) CCLM–NCEP1 wind products, (b) CCLM–CFSR wind products, (c) CCLM–ERAint wind products and 
(d) CCLM–JRA55 wind products. The black points represent the average residuals based on the eight direction 
sectors, and the bars represent the standard deviations.
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Fig. 7. Box and whisker plots showing the distributions of the modeled and observed wind speeds for all stations: 
Q1, Q2, and Q3 represent the 25th-, 50th-, and 75th-percentile wind speeds, respectively, whereas the black 
point represents the 99th-percentile wind speed. C–N, C–C, C–E and C–J are abbreviations for CCLM–NCEP1, 
CCLM–CFSR, CCLM–ERAint and CCLM–JRA55, respectively.
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each simulation except for the driving data set. Thus, 
the performance variations of the simulation results 
can be predominantly attributed to the quality of the 
forcing data sets. In Fig. 9, we show the differences in 
terms of a comparison between the forcing data sets 
and the observations for wind speed bins of 1 m s–1. 
All of the forcing data generally overestimate the 
wind speeds at values lower than approximately 6.5 
m s–1 and underestimate them at higher wind speeds 
of 6.5 m s–1 and above, leading to differences in the 
reproduction skills of the downscaled wind products 
at different wind intensities reported in Section 3.2. 
CCLM_55km is characterized by a systemic positive 
bias and a much larger error variance compared with 
CFSR, ERAint, and JRA55. However, compared with 
NCEP1, the wind bias of CCLM_55km is much lower 
for strong winds, whereas the error variance of the 
CCLM_55km data is still higher because of its high 
variability. CFSR, ERAint, and JRA55 exhibit quite 
consistent standard deviation errors, but their bias 
results show some differences, with ERAint being 

the worst in the case of strong winds and CFSR being 
the worst for light winds, reversed with respect to the 
results for the downscaled products. Thus, the quali-
ties of the hindcasts are predominantly determined by 
the driving data sets; however, certain other factors 
are also of great importance such as the consistency 
between the hindcasts and the driving data sets. 

One of the most intriguing issues related to RCMs 
is whether the added value can be generated through 
dynamical downscaling. To investigate this issue, the 
statistical measures and distribution features of the 
wind speeds at each station for the forcing and down-
scaled data sets are considered for comparison with 
the observations. As examples, two of the stations 
(SEO and IEO) are represented in Fig. 10 and Fig. 
11. We can clearly observe the presence of added 
value in the wind distribution and bias reduction at 
station SEO for CCLM–CFSR (Fig. 10b) and CCLM–
ERAint (Fig. 10c), but this is not the case at station 
IEO (Fig. 11). Considering the statistical measures 
(bias, correlation coefficient, and RMSE) for each 

Fig. 8. The wind distributions and fitted Weibull distributions for the CSD (blue) and MSD (red) at all stations for 
each downscaled simulation: (a) CCLM–NCEP1, (b) CCLM–CFSR, (c) CCLM–ERAint, and (d) CCLM–JRA55.
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station (not shown here), we find more cases of which 
these measures degrade with the downscaling for 
JRA55 and CCLM_55km than cases of which they 
improve. The cases are general equally distributed for 
the downscaling of ERAint and CFSR and the first 
downscaling of NCEP1; in terms of wind distribution, 
there are more cases that exhibit improvement than 
the deterioration for the downscaling of ERAint and 
JRA55 and the first downscaling of NCEP1.  

Furthermore, we investigate whether the value 
added to the statistical measures by the CCLM is 
related to the wind intensity. As shown in Fig. 12, 
there is no bias reduction for any downscaled simula-
tion relative to its driving data set at low wind speeds, 
whereas at high wind speeds, a large bias reduction 
is achieved for the NCEP1 downscaled simulations 
CCLM_55km and CCLM–NCEP1 (Fig. 12a) and 
the bias is reduced slightly by downscaling ERAint 
and JRA55 (Figs. 12c, d), while CCLM–CFSR has a 
larger bias than does CFSR (Fig. 12b). In terms of the 
standard deviation error, the forcing and downscaled 
data sets show similar results (with the exception of 
the NCEP1 downscaling simulations, where a greater 
standard deviation error is induced by CCLM_55km). 

Overall, the performances of the hindcast simula-
tions are generally consistent with the reproduction 
capability of their driving data sets, thereby demon-

strating the importance of the forcing data. Neverthe-
less, some system error can be induced by the RCM 
itself, including the error because of the spatial and 
temporal interpolation of the forcing data or issues 
related to the consistency of dynamics and physics 
between the regional model and the large scale 
forcing data set. For our research domain, NCEP1 
would be the least desirable choice because its statis-
tical measures are the worst among all of the reanal-
yses; CCLM_55km offers some improvement in 
several cases relative to NCEP1, but it is still worse 
than the other three reanalyses. For CFSR, ERAint, 
and JRA55, their statistical measures and wind distri-
butions are similar. In terms of added value, we 
conclude that CCLM–ERAint and CCLM–JRA55 
may possibly outperform CCLM–CFSR and CCLM–
NCEP1, especially at high wind speeds; however, we 
cannot obtain a robust conclusion regarding the added 
value from the downscaling and its dependence on the 
driving data sets because the available observation 
sites are limited and the spatial distributions of the 
potential added value vary considerably. Further study 
is needed regarding the added value.

5.  Conclusion

In this study, we compared the relative performance 
of downscaling strategies using different reanalyses 

Fig. 9. Comparisons of conditional bias (dash-dotted lines) in wind speed and standard deviation error (dashed 
lines) between the forcing data sets and the observations at the seven stations; the conditioning is performed on 
the strength of the observed wind, in bins of 1 m s–1.
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to constrain a regional climate model. Not surpris-
ingly, the driving reanalyses that offer higher spatial 
resolution and better data coverage fare better than, 
particularly the NCEP1 data set. The latter describes 
the synoptic state on a considerably coarser grid; the 
higher resolution required for the forcing of the 7-km 
simulation is achieved via an initial downscaling step. 
The fact that this description is inferior to that of, for 
instance, ERAint is to be expected, and our analysis 
confirms this expectation. 

Therefore, the NCEP1-driven analysis is less accu-
rate than, for instance, ERAint when both are avail-
able. However, this result does not imply that a simu-
lation using NCEP1, particularly when performed 
without the intermediate CCLM “interpolation,” does 
not provide a useful analysis of past weather. The 
primary advantage of such an NCEP1-constrained 
simulation is the much longer term availability of 
NCEP1, namely, from at least 1958, if not 1948. 
For most of the Northern Hemisphere, the processes 
constrained by the large scale portion of NCEP1 are 

considered to be mostly homogeneous, although there 
may be some exceptions, for instance, in central Asia 
(Klehmet 2014). Various studies have demonstrated 
the added value and utility of such a simulation on 
a 50-km grid (Weisse et al. 2009; Feser et al. 2011), 
which can provide a mostly homogeneous description 
for 60 or more years. For shorter time scales, a more 
accurate analysis may be derived from more accurate 
drivers, as demonstrated in the present study.

In the preceding sections, we investigated the 
observed wind characteristics as well as the suitability 
of dynamical downscaling for describing the local 
wind conditions at a number of stations along the 
coast of the Yellow Sea. Four global reanalyses, i.e., 
NCEP1, CFSR, ERAint and JRA55, were fed into the 
7-km-grid regional atmospheric model CCLM using 
spectral nudging. The comparison was performed for 
the year 2006, where good observational data were 
available. A comprehensive statistical analysis was 
conducted, focusing on the intercomparison of wind 
data downscaled from different forcing data sets. 

Fig. 10. The qq-plots and statistical measures (B: bias, R: correlation coefficient) for the forcing and downscaled 
data sets at station SEO: (a) CCLM–NCEP1, CCLM_55km and NCEP1, (b) CCLM–CFSR and CFSR, (c) 
CCLM–ERAint and ERAint, and (d) CCLM–JRA55 and JRA55.
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The main conclusions drawn from this study can be 
summarized as follows:
 - 	The wind speed along the western coast of the 

Korean Peninsula generally increases from north 
to south, with light winds being dominant and 
prevailing in the northerly and northwesterly direc-
tions at the northern stations, whereas the southern 
coast of the Peninsula is characterized by the 
highest annual mean wind speed and the highest 
percentage of strong winds, primarily because of 
the intensification because of the topography of 
the Korean Peninsula and the Island of Jeju, or 
Tsushima.

 - 	The downscaled simulations yield good quality 
wind speed products. However, they all tend 
to overestimate observed low wind speeds and 
underestimate observed high wind speeds; they 
are better at reproducing intermediate winds 
(4–12 m s–1). CCLM–CFSR, CCLM–ERAint, and 
CCLM–JRA55 are consistent in their reproduc-
tion of wind speeds and directions, with CCLM–
ERAint and CCLM–JRA55 being slightly better 

than CCLM–CFSR for strong winds and vice versa 
for light winds. All three offers better performance 
than does CCLM–NCEP1 in reproducing local 
winds. 

 - 	The accuracy of the modeled wind direction is 
strongly associated with the wind speed intensity; 
all simulations tend to produce better results for 
wind directions associated with strong winds. 
With their higher spatial resolution and more 

advanced assimilation and correction techniques, the 
CFSR, ERAint, and JRA55 data sets exhibit much 
better capabilities of reproducing local wind speeds 
than does NCEP1 in the area under study. In addition, 
some integration errors may accumulate during the 
downscaling from NCEP1 to first CCLM_55km and 
then CCLM–NCEP1, which leads to poorer quality 
of the modeled wind speeds upon downscaling from 
NCEP1 compared with that achieved by directly 
downscaling from CFSR, ERAint, and JRA55. Based 
on the results presented in this work, JRA55, ERAint, 
and CFSR can provide reliable initial and boundary 
conditions for RCMs in our research domain. For 

Fig. 11. The same as Fig. 10 but for station IEO.
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longer time scales, JRA55 is preferred for long-term 
climate studies and certain other potential applications 
in climate simulations.

High-resolution (7 km) simulations enable more 
realistic physiographic forcing features such as 
complex orography, and coastlines. It is expected 
that there may be some potential added value arising 
from dynamical downscaling because meso-scale 
phenomena, such as meso-cyclones and orographi-
cally induced wind flows and fronts, can be resolved 
by means of downscaling simulations instead of using 
coarse resolution reanalysis data sets. However, no 
robust proof of such an added value has been obtained 
in the present study, possibly as a result of temporal or 
spatial limitations of the observations in the research 
domain. Further investigations of the potential for 
added value will be performed in the future based on 
the available QuikSCAT field observations and long-
term simulation data, similar to the work conducted 
by Winterfeldt et al. (2011) in northern Europe.   
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